Properties

Label 6.6.1995125.1-29.4-c1
Base field 6.6.1995125.1
Conductor norm \( 29 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field 6.6.1995125.1

Generator \(a\), with minimal polynomial \( x^{6} - 2 x^{5} - 6 x^{4} + 6 x^{3} + 12 x^{2} + x - 1 \); class number \(1\).

Copy content comment:Define the base number field
 
Copy content sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, 1, 12, 6, -6, -2, 1]))
 
Copy content gp:K = nfinit(Polrev([-1, 1, 12, 6, -6, -2, 1]));
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 1, 12, 6, -6, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(3a^{5}-8a^{4}-11a^{3}+22a^{2}+18a-4\right){x}{y}+\left(2a^{5}-5a^{4}-8a^{3}+13a^{2}+13a\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-123a^{5}+238a^{4}+731a^{3}-616a^{2}-1451a-429\right){x}-1172a^{5}+2094a^{4}+7429a^{3}-5284a^{2}-15069a-4833\)
Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([K([-4,18,22,-11,-8,3]),K([-1,1,0,0,0,0]),K([0,13,13,-8,-5,2]),K([-429,-1451,-616,731,238,-123]),K([-4833,-15069,-5284,7429,2094,-1172])])
 
Copy content gp:E = ellinit([Polrev([-4,18,22,-11,-8,3]),Polrev([-1,1,0,0,0,0]),Polrev([0,13,13,-8,-5,2]),Polrev([-429,-1451,-616,731,238,-123]),Polrev([-4833,-15069,-5284,7429,2094,-1172])], K);
 
Copy content magma:E := EllipticCurve([K![-4,18,22,-11,-8,3],K![-1,1,0,0,0,0],K![0,13,13,-8,-5,2],K![-429,-1451,-616,731,238,-123],K![-4833,-15069,-5284,7429,2094,-1172]]);
 

This is a global minimal model.

Copy content comment:Test whether it is a global minimal model
 
Copy content sage:E.is_global_minimal_model()
 

Mordell-Weil group structure

\(\Z\)

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$\left(\frac{86563}{841} a^{5} - \frac{272450}{841} a^{4} - \frac{192797}{841} a^{3} + \frac{700848}{841} a^{2} + \frac{200001}{841} a - \frac{41466}{841} : \frac{37595317}{24389} a^{5} - \frac{124355976}{24389} a^{4} - \frac{65373015}{24389} a^{3} + \frac{318569637}{24389} a^{2} + \frac{41027618}{24389} a - \frac{35391933}{24389} : 1\right)$$3.9575521479894492090225436958826619313$$\infty$

Invariants

Conductor: $\frak{N}$ = \((a^2-2a-3)\) = \((a^2-2a-3)\)
Copy content comment:Compute the conductor
 
Copy content sage:E.conductor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 29 \) = \(29\)
Copy content comment:Compute the norm of the conductor
 
Copy content sage:E.conductor().norm()
 
Copy content gp:idealnorm(K, ellglobalred(E)[1])
 
Copy content magma:Norm(Conductor(E));
 
Discriminant: $\Delta$ = $-a^4+4a^3-9a$
Discriminant ideal: $\frak{D}_{\mathrm{min}} = (\Delta)$ = \((-a^4+4a^3-9a)\) = \((a^2-2a-3)\)
Copy content comment:Compute the discriminant
 
Copy content sage:E.discriminant()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Discriminant norm: $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ = \( -29 \) = \(-29\)
Copy content comment:Compute the norm of the discriminant
 
Copy content sage:E.discriminant().norm()
 
Copy content gp:norm(E.disc)
 
Copy content magma:Norm(Discriminant(E));
 
j-invariant: $j$ = \( -\frac{61552291988378339328827}{29} a^{5} + \frac{108272845536099489867930}{29} a^{4} + \frac{395403349463381380906095}{29} a^{3} - \frac{274036730257245363907994}{29} a^{2} - \frac{804659831415094141348378}{29} a - \frac{255444408231731420144507}{29} \)
Copy content comment:Compute the j-invariant
 
Copy content sage:E.j_invariant()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z\)    (no potential complex multiplication)
Copy content comment:Test for Complex Multiplication
 
Copy content sage:E.has_cm(), E.cm_discriminant()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 1 \)
Copy content comment:Compute the Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content magma:Rank(E);
 
Mordell-Weil rank: $r$ = \(1\)
Regulator: $\mathrm{Reg}(E/K)$ \( 3.9575521479894492090225436958826619313 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ \( 23.745312887936695254135262175295971588 \)
Global period: $\Omega(E/K)$ \( 3.1300984271796062170130256185564388845 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 1 \)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(1\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 4.26222 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 81 \) (rounded)

BSD formula

$$\begin{aligned}4.262220000 \approx L'(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 81 \cdot 3.130098 \cdot 23.745313 \cdot 1 } { {1^2 \cdot 1412.488938} } \\ & \approx 4.262219920 \end{aligned}$$

Local data at primes of bad reduction

Copy content comment:Compute the local reduction data at primes of bad reduction
 
Copy content sage:E.local_data()
 
Copy content magma:LocalInformation(E);
 

This elliptic curve is semistable. There is only one prime $\frak{p}$ of bad reduction.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((a^2-2a-3)\) \(29\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 29.4-c consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.